Matter, Molecules, and their Environments, Condensed Matter Track Univ Lille, France 2024-2025

Document 27 May 2024, Sébastien Merkel

Courses overview

- Dynamical properties of matter (6 ECTS)
- Imperfections in solids (6 ECTS)
- Thermodynamics and phase transitions (6 ECTS)
- Molecular spectroscopy (3 ECTS)
- Atomic scale modeling (6 ECTS)
- Advanced characterization methods (6 ECTS)
- Scientific writing & communication (3 ECTS)
- English or French (3 ECTS)
- Laboratory internship (21 ECTS)

Course details

Dynamical properties of matter (6 ECTS)

- Amorphous materials (3 ECTS)
 - Structural organizations of materials (crystals, mesophases, glasses)
 - Study of molecular mobility: different scales of dynamics, fluctuation/dissipation theorem, measurement techniques
 - Dynamics of glass-forming liquids: non-Arrhenian and non-Arrhenian character exponential of the main relaxation, secondary relaxations, evolution over time, other relaxations
 - Case of mesophases: semi-crystalline materials, liquid crystals, plastic crystals.
- Crystals (3 ECTS)
 - Vibrational dynamics of three-dimensional crystals: dispersion curves, density of states, quantification of normal and phonon modes
 - Connection to continuous media and elastic constants
 - Thermal properties of crystals and specific heat Debye-Waller factor anharmonic effect (thermal expansion and Grüneisen constant).
 - Equations for elastic continuous media.
 - Dispersion and transmission curves, natural modes.
 - Application to phononic crystals and acoustic metamaterials: foundation and applications.
 - Phonon/photon coupling.
 - Introduction to new physical properties: negative refraction, invisibility to acoustic waves, hyperfocusing, revisiting the laws of Snell Descartes, phonon-photon coupling (optomechanics), etc

Imperfections in solids (6 ECTS)

- Fundamentals
 - Plasticity in amorphous materials
 - Defects
 - Introduction to dislocations
 - Elastic theory of dislocations
 - From dislocation to plasticity
 - Lattice friction and dislocation mobility
 - Interactions dislocations dislocations, dislocations point defects, dislocations precipitates
- Grain boundaries:
 - Grain boundary geometry
 - Mechanics of grain boundaries, disconnections and disclinations
- Microstructures and polycrystals:

- Description of orientations in a polycrystal: Euler angles, matrix form, orientation distribution function
- Experimental measurement techniques: EBSD and X-ray diffraction
- Average elasticity and properties of polycrystals
- Microscopic origins of texture
- $\circ \quad \text{Introduction to modeling methods}$

Thermodynamics and phase transitions (6 ECTS)

- Phase transitions (3 ECTS)
 - Basics of thermodynamics and usual phase diagrams
 - Thermodynamic classification of phase transitions
 - Stability, metastability and instability
 - Physical states: crystalline polymorphs, mesophases, amorphous
 - Dynamics of phase transitions: Nucleation/Growth Interfaces Avrami model Vitrification
 - Connection between microscopic and macroscopic properties
 - \circ $\;$ Experimental methods for studying phase transformations.
- Binary systems (3 ECTS)
 - Phase transformation in binary systems
 - Calculation of a Gibbs energy curve
 - Solution models (ideal, regular and real)
 - Introduction to chemical potentials
 - Common tangent rule
 - Variance rule
 - Raoult's laws and of Henry
 - Precipitation of a solid phase into another in a binary system
 - Nature of a heterophase interface (coherent, semi-coherent and incoherent)
 - Calculation of the elastic energy associated with precipitation
 - Loss of coherence
 - Driving force of germination
 - Euler model for growth

Molecular spectroscopy (3 ECTS)

- Molecular symmetry. Symmetry groups
- Molecular Energy Levels
- Rotation-vibration interactions
- Molecular spectra
- Spectroscopy of diatomic radicals

Atomic scale modeling (6 ECTS)

- Calculation of gas electronic structures: Hartree-Fock and density functional theory (DFT)
- Molecular mechanics and classical dynamics (force fields, determination of macroscopic quantities, ensembles, thermostats, stress, Ewald summations, etc)
- Monte Carlo methods
- Introduction to ab-initio molecular dynamics or DFT

Advanced characterization methods (6 ECTS)

- Spectroscopies (3 ECTS)
 - Introduction to spectroscopy characterization techniques
 - High-resolution terahertz spectroscopy and molecular structure (class and practicals)
 - Raman spectroscopy (class and practicals)
 - Fourier transform infrared spectroscopy (class and practicals)
 - Dielectric spectroscopy (class and practicals)
- Diffraction and electron microscopy (3 ECTS)
 - Course
 - Radiation Matter interactions
 - Diffraction techniques
 - Specificity of powder diffractions and Rietveld refinement

- Electron microscopyPracticals
- - Rietveld refinement
 - Electron microscopy

Scientific writing & communication (3 ECTS)

English or French (3 ECTS)