

PMM Physics of Materials and Molecules

Sébastien MERKEL Sebastien.merkel@univ-lille.fr

Presentation September 2025
Homepage of the MME 2nd year Master Track (to be updated soon)

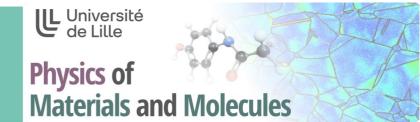
Physics of Materials and Molecules

Introduction for PMM

Generalities

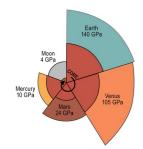
- PMM = "Physics of Materials and Molecules"
- 2-years track, part of the "Applied and Fundamental Physics" master's program
- · Some classes shared with
 - "Quantum and Photonic Technologies" master track
 - "Bio and pharmaceutical materials" master track
- Number of students: up to 15 for "Physics of Materials and Molecules"

Entry requirement


- In first year
 - Bachelor or 3rd year university degree in physics or physical chemistry
- In second year
 - Master or 4th year university degree in physics or physical chemistry

Jobs and careers

- Research in academia
- Public or private research laboratories
- Industry



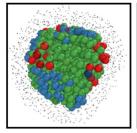
Training objectives

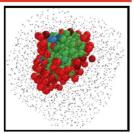
Science for discovery

Planetary building blocs Molecules in the solar system

Science for solutions

Metals, applications, and limitations




Advanced polymers for new packaging

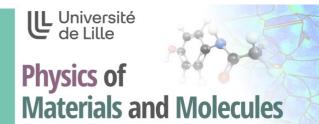
Design advanced experiments

npi | computational materials

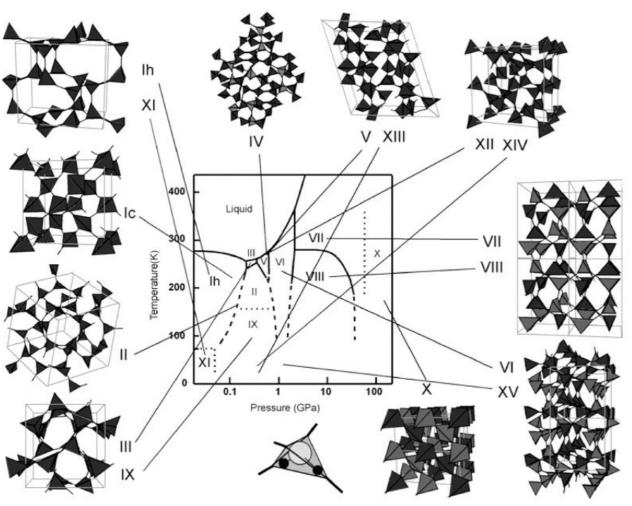
Advanced atomistic calculations

Materials for novel energy sources

Training objectives


Physicists and chemical-physicists capable of tackling the major scientific questions of the 21st century

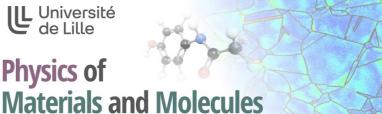
- Solve concrete problems
 - Design new materials for tomorrow's industry
 - Improve materials properties in their conditions of use
 - New materials for new energy sources
- Address fundamental questions
 - Matter within planets and atmospheres
 - Defects and materials thermodynamics
 - Calculations and theories for the atomic scale
 - Use of major international research instruments

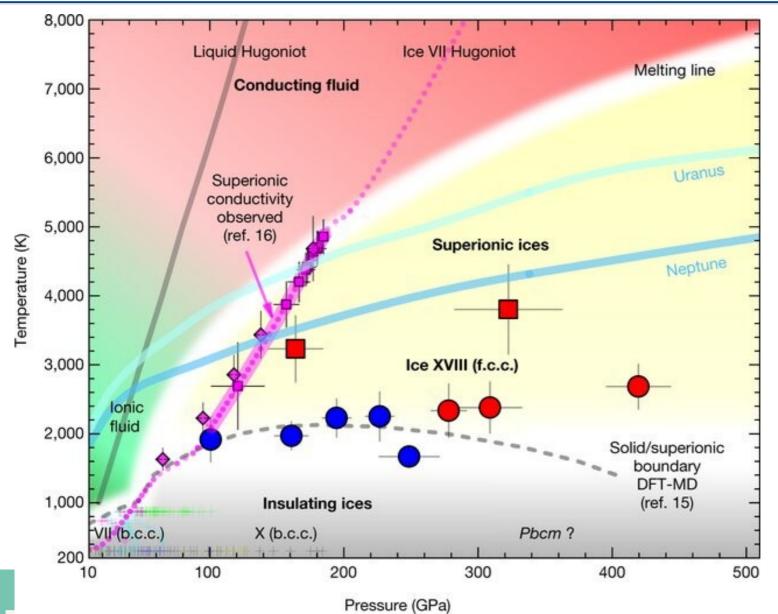


A "simple" material: H₂0

H₂O phase diagram Umemoto Rev. Miner. Geochem. (2015)

Effect of pressure and temperature on H₂0


- Over 15 known solid crystal phases
- Requires
 - Thermodynamics
 - Solid state physics
 - Advanced experiments (spectroscopy, diffraction)
 - Quantum calculations
- **Applications**
 - Extreme environments
 - Planetary interiors



Ice, again!

Millot, Coppari et al, 2019

FACULTÉ
DES SCIENCES ET
TECHNOLOGIES

Universite de Lille

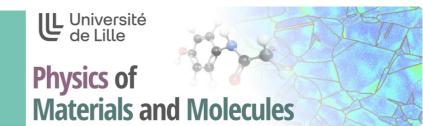
Physics of Materials and Molecules

Acta Crystallographica Section C STRUCTURAL CHEMISTRY

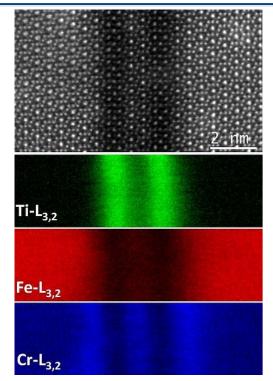
Volume 77 | Part 12 | 1 December 2021 Structure of riboflavin by high-resolution powder diffraction IUCr Journals | Wiley

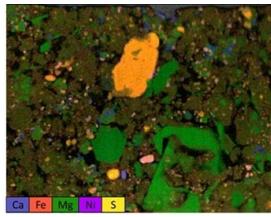
Vitamins?

Vitamin B2


Riboflavine ($C_{17}H_{20}N_4O_6$)

Structure solved with


- X-ray diffraction
- Advanced quantum computer calculations



Advanced modeling and characterization techniques

Left: phase transformation in a Martian meteorite

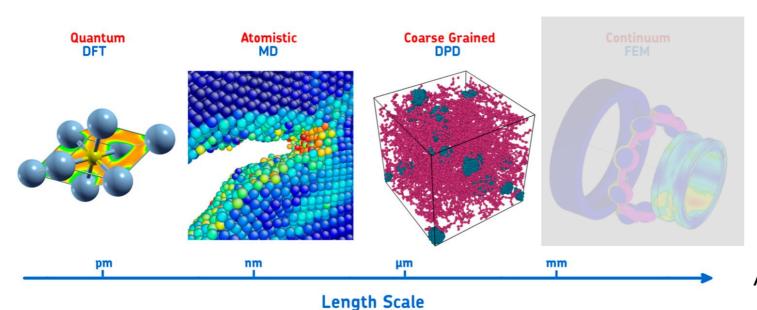
Top: chemical mapping of a chondrite

Electron microscopy TEM at the

Chevreul Institute (on campus)

Spectroscopy

Supercam on Perserverance (artist rendering) Raman spectroscopy, time-resolved fluorescence (TRF) spectroscopy, and Visible and InfraRed (VISIR) reflectance spectroscopy


Advanced modeling and characterization techniques

European X-ray laser in Hambourg

Atomic scale modeling

Research laboratories support

Attached laboratories in Lille

- UMET: Unité Matériaux et Transformations
 - Materials science, interface between physics and chemistry
 - Applications to polymers, metals, pharmaceutical materials,
 Earth and planetary science, etc
- PhLAM: Physique des Lasers, Atomes et Molécules
 - Molecular physics
 - Spectroscopy and applications
 - Theoretical Molecular Physico-Chemistry
- IEMN: Institut d'Electronique, Microélectronique et Nanotechnologie
 - Physics of nanomaterials
 - Wave propagation in structured materials
- LOA: Laboratoire d'Optique Atmosphérique
 - Physics and spectoscropy for the observation of atmosphere

Internships can be made outside Lille. It is not required to stay on site, nor in France. First year internships can be outside of academia.

Student target

Background in fundamental physics or physical chemistry

Students in search of solutions, who will be trained in the latest advances in the sciences of matter, and will be able to develop and exploit new materials, the latest analytical methods, and the analytical tools to tackle today's societal issues;

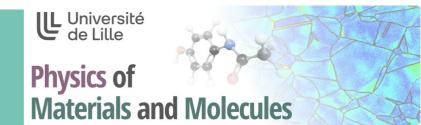
Students in search of discoveries, who will be able to understand the fate of matter in a variety of environments and conditions, from the core of a nuclear power plant, to polymers, metals, pharmaceutical materials, up to the interior of planets or the atmosphere.

Former students: employers

Academia / Government agencies

- CNRS
- Yale University, US
- Phoenix University, US
- Université Tours
- Univ. Lille
- Universitas 17 Agustus 1945 Surabaya, Indonesia
- Canadian Nuclear Laboratories
- CEA
- Onera
- Grenoble INP
- Université libre de Bruxelles

Private sector (industry)


- Siemens Energy
- Framatome
- EDF
- Decathlon France
- Altsom
- Raclot Industries
- AstraZeneca
- Imerys
- Groupe Institut de Soudure
- ITP Interpipe
- Blue Capsule Technology
- PPG

Consulting / computer industry

- Devoteam G Cloud
- Sopra HR Software
- Sopra Banking Software
- Groupe Luminess
- Axecom
- Calogena
- DEF
- Assystem
- Power Inside Data

What will you learn?

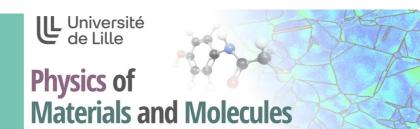
Fundamental physics

- Thermodynamics and statistical physics
- Solid state physics
- Atomic and molecular physics
- Materials science
- Light and matter interactions

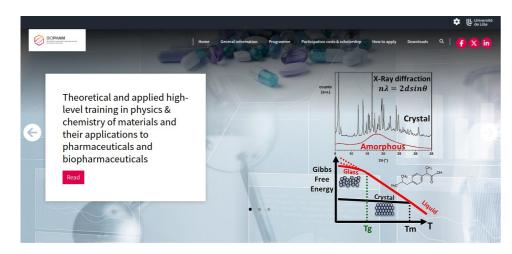
Observation and experiments

- Spectroscopy and diffraction
- Electron microscopy
- Large scale facilities (synchrotrons, accelerators, etc)
- Remote sensing, satellites

Computation methods


- IA and algorithms
- Molecular dynamics
- Quantum calculations (DFT)

Professional development

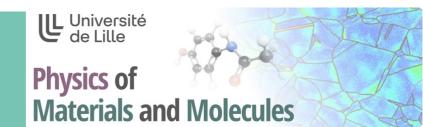

- Language courses
- Internships
- Tutored training on advanced topics
- Laboratory projects

BIOPHAM sister's program

Welcome to BIOPHAM

The Erasmus Mundus Joint Master Degree BIOPHAM is a two-year master programme entirely taught in English. It aims at meeting an international demand for qualified graduates with theoretical and applied high-level training in materials science and physics & chemistry of materials and their applications to pharmaceuticals.

 $BIOPHAM\ was\ built\ by\ a\ consortium\ of\ four\ acknowledged\ European\ Universities\ and\ benefits\ from\ the acknowledged\ European\ Universities\ from\ the acknowledged\ European\ European\$


~50% of classes in the condensed matter options are shared with BIOPHAM

BIOPHAM

- Erasmus Mundus Joint Master Degree
- Training in materials science and physics & chemistry of materials and their applications to pharmaceutical
- Semester 1 and 3 in Lille

Curriculum

3 teaching blocs, spread over 4 semesters

Bloc 1: Develop specialized skills to produce knowledge in fundamental physics

By implementing advanced and specialized uses of digital tools

By analyzing data for fundamental physics

By practicing an experimental approach adapted to a physics problem

By mobilizing and producing highly specialized knowledge

Bloc 2: Produce and communicate highly specialized knowledge, including in a professional context

By mobilizing and producing highly specialized knowledge

By implementing specialized communication for knowledge transfer

By contributing to transformation in a professional context

Bloc 3: Solving complex problems by applying fundamental physics concepts

By mobilizing and producing highly specialized knowledge

By solving complex problems using fundamental concepts of fundamental physics

Bloc 1 Specialized Skills

AI and advanced computational methods in physics 3 ECTS

States of Matter and Materials Science Primers 3 ECTS

Atomic scale modeling I 3 ECTS

Bloc 2 Professional Skills

French or English 3 ECTS

Tutored trainings 3 ECTS

Materials science graduate program 3 ECTS

Bloc 3 Fundamental physics

Continuum mechanics 3 ECTS

Statistical physics and critical phenomena 3 ECTS

Condensed matter I Electrons 3 ECTS

Atomic physics 3 ECTS

Bloc 1 Spezialized Skills

Satellites and remote sensing 3 ECTS

Radiative transfer and radiation-matter interactions 3 ECTS

Large scale research infrastructures 3 ECTS

Experimental project 3 ECTS

Bloc 2 Professional Skills

Tutored trainings 3 ECTS

Internship 6 ECTS

Bloc 3 Fundamental physics

Condensed Matter II
Phonons
3 ECTS

Fundamentals of molecular spectroscopy 3 ECTS

Microstructures and defects in materials 3 ECTS

Bloc 1 Spezialized Skills

Electron microscopy and diffraction 3 ECTS

Advanced Spectroscopy of Molecular Systems 3 ECTS

Atomic scale modeling II 3 ECTS

Bloc 2 Professional Skills

French or English 3 ECTS

Speciality 6 ECTS

3 out of 5
Materials under extreme conditions
Metals and alloys
Polymers
Mathematical crystallography
Instrumentation in spectroscopy

Bloc 3 Fundamental physics

Advanced thermodynamics and phase transformations 3 ECTS

Molecular mobility and amorphous state of matter 3 ECTS

From macro to nanophysics 3 ECTS

Materials plasticity 3 ECTS

Offers for internships 2024-2025

LOA

Aerosol Measurement Over Oceans

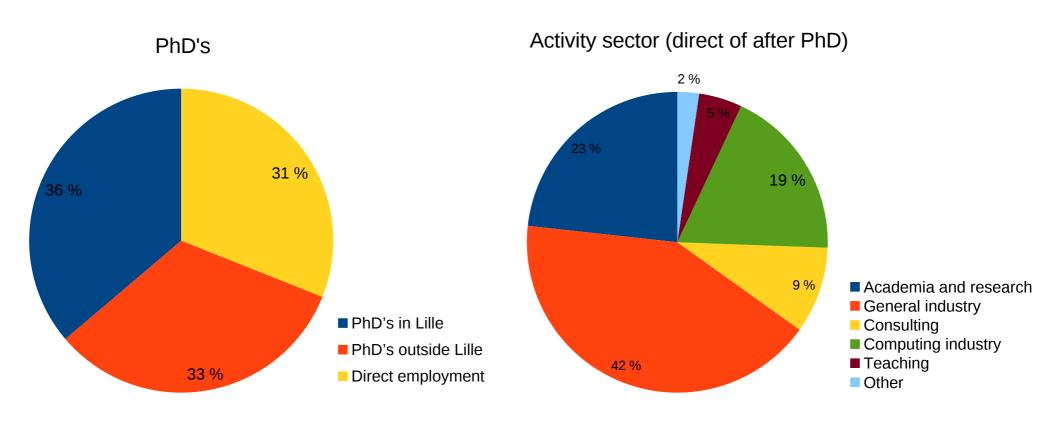
PhLAM

- Characterization of Gas-Phase Atmospheric Organic Compounds and their Weakly Bonded Complexes via Rotational Spectroscopy
- Complexation of trivalent actinides by phosphate species
- Linking core spectra features of actinide complexes to their local environment
- Studying Reactivity of Atmospherically Relevant Radicals using Chirped Pulse Fourier Transform Millimeter wave spectroscopy
- Theoretical Investigation of the Surface Activity of Organosulfates on water droplets

Subjects for internships

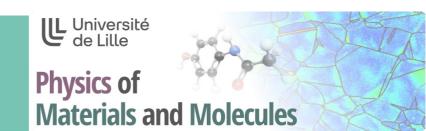
- Can be outside Lille
- change from year to year, depending on students, labs, etc.
- Not so many from LOA this year. Could be different next year

UMET

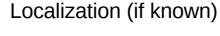

- High PT experiments for modeling the Earth's inner core
- Machine-learning approaches for nanoparticle simulations
- Modeling of dislocations in perovskite oxides ABO3
- Phase-field modelling of radiation induced segregation application to nickel based alloys
- TEM analysis of a possible natural deep Earth sample

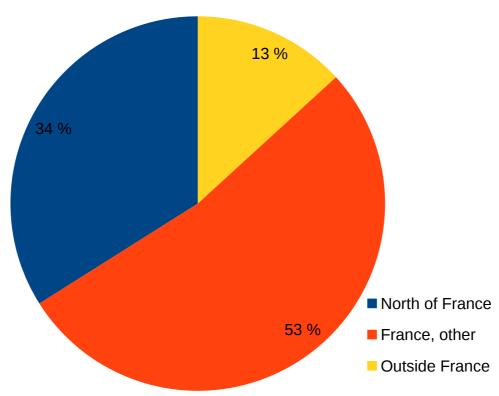
IEMN

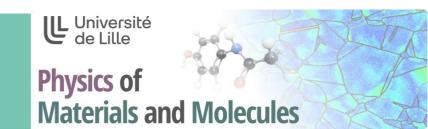
- Using strong coupling to detect gas traces in the THz range
- Exploring Proteins quantum dynamics by using strong coupling in the Terahertz range
- Developing Novel THz Spectroscopy Techniques for Biological Sample sensing
- THz-Photonics in Biomolecular Research



Statistics on ~60 students 2008-2024






Statistics on ~60 students 2008-2024

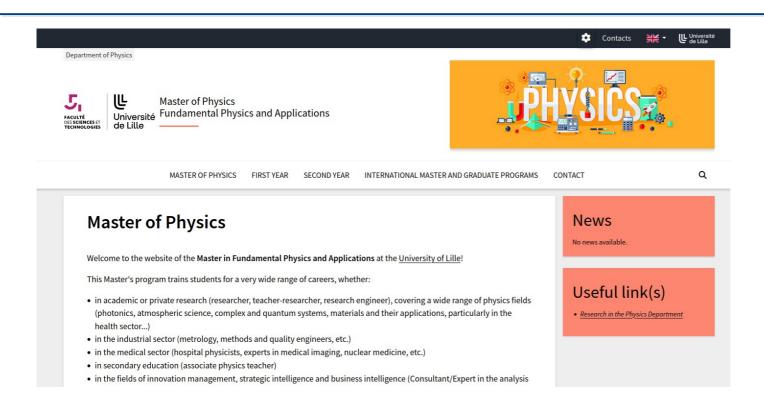
How to apply?

The "Etudes en France" (Studying in France) procedure

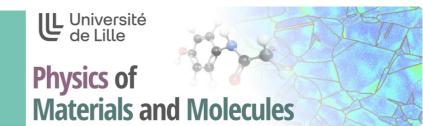
- Applies to ~70 countries
- Create an account on the "Study in France" platform and apply
- Deadlines: *mid-December*, probably
- Will take care of admission procedures and visas

Students with no procedures on "Etudes en France"

- 1st year: use monmaster.gouv.fr internet platform, the French national platform for information and applications for a national Master's degree. Applies to
 - International students residing in France;
 - Students who are citizens of or reside in a country in the European Economic Area;
 - International students who reside in a country that is not covered by the "Etudes en France" procedure.
- 2nd year: apply directly to the University, on a plaform called e-candidat (same conditions as above)
- Deadline: spring 2026.


"Etudes en France" is mandatory if you do not meet the conditions above. Do not try to apply directly. We can not accept applications that do not follow the procedure.

Updates and information



Physics masters degree website Requires an update to new curriculum https://master-physique.univ-lille.fr/en/ Coming up fall 2025

